Wearable and Washable Conductors for Active Textiles.
نویسندگان
چکیده
The emergence of stretchable electronics and its potential integration with textiles have highlighted a challenge: Textiles are wearable and washable, but electronic devices are not. Many stretchable conductors have been developed to enable wearable active textiles, but little has been done to make them washable. Here we demonstrate a new class of stretchable conductors that can endure wearing and washing conditions commonly associated with textiles. Such a conductor consists of a hydrogel, a dissolved hygroscopic salt, and a butyl rubber coating. The hygroscopic salt enables ionic conduction and matches the relative humidity of the hydrogel to the average ambient relative humidity. The butyl rubber coating prevents the loss and gain of water due to the daily fluctuation of ambient relative humidity. We develop the chemistry of dip-coating the butyl rubber onto the hydrogel, using silanes to achieve both the cross-link of the butyl rubber and the adhesion between the butyl rubber and the hydrogel. We test the endurance of the conductor by soaking it in detergent while stretching it cyclically and by machine-washing it. The loss of water and salt is minimal. It is hoped that these conductors open applications in healthcare, entertainment, and fashion.
منابع مشابه
How to Make Reliable, Washable, and Wearable Textronic Devices
In this paper, the washability of wearable textronic (textile-electronic) devices has been studied. Two different approaches aiming at designing, producing, and testing robust washable and reliable smart textile systems are presented. The common point of the two approaches is the use of flexible conductive PCB in order to interface the miniaturized rigid (traditional) electronic devices to cond...
متن کاملThree - dimensionally deformable , highly stretchable , permeable , durable and washable fabric circuit
This paper reports fabric circuit boards (FCBs), a new type of circuit boards, that are threedimensionally deformable, highly stretchable, durable and washable ideally for wearable electronic applications. Fabricated by using computerized knitting technologies at ambient dry conditions, the resultant knitted FCBs exhibit outstanding electrical stability with less than 1% relative resistance cha...
متن کاملFabrication of zinc oxide nanoneedles on conductive textile for harvesting piezoelectric potential
Keeping the fact in mind that different morphologies have strong influence on piezoelectric properties, ZnO NNs were synthesized on textile for harvesting piezoelectricity. Piezoelectric potential was captured from ZnO NNs grown on textile by using AFM in contact mode. Structural study was carried out by using FESEM, HRTEM and XRD techniques. The recorded output potential and current was more t...
متن کاملUltrasensitive and Highly Selective Graphene-Based Single Yarn for Use in Wearable Gas Sensor
Electric components based on fibers or textiles have been investigated owing to their potential applications in wearable devices. High performance on response to gas, drape-ability and washing durability are of important for gas sensors based on fiber substrates. In this report, we demonstrate the bendable and washable electronic textile (e-textile) gas sensors composed of reduced graphene oxid...
متن کاملWearable ECG Module for Long-term Recordings using a Smartphone Processor
Life-threatening cardiovascular diseases require early detection or diagnosis. A standard procedure, long-term ECG monitoring of cardiac patients is currently the best way to reduce the number of heart failures. Dry and washable textile electrodes embedded in comfortable garment or in a wearable chest belt have been proven very effective for a long-term ECG monitoring in comparison to the conve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 9 30 شماره
صفحات -
تاریخ انتشار 2017